
Controlling Mirage Audio System

Controlling a Mirage Media Server

Introduction

We categorize control of a Mirage Media Server (MMS) into four categories:

Connecting and the preamble
Events
Control
Browsing & content selection
Presets
Playlists
Now Playing
Album Art

For information regarding using the RESTful endpoints, see the end of this document.

Connecting

An MMS is controlled via a socket or telnet connection to port 5004 on the device’s IP address. Commands sent
and responses received are terminated with a carriage return and a line feed. Commands commonly used in a
connection preamble will be briefly defined here but will have a more complete definition later.

A typical initialization sequence looks like:

SetClientType DemoClient

SetClientVersion 1.0.0.0

SetHost 192.168.0.100

SetXmlMode Lists

SetEncoding 65001

SetInstance Player_A

SubscribeEvents

GetStatus

SetClientType DemoClient identifies the control client to the MMS. This command takes a single string
argument.

SetClientVersion 1.0.0.0 allows the control client to set a version. We strongly recommend setting a
client version. This will allow the server to react to client version changes if necessary. This command takes a
version string in the format MAJOR.MINOR.BUILD.REVISION

SetHost 192.168.0.100 tells the server which address the control client connected on. This is useful if the
control client is connecting through a external connection where the address it used might a web address. We
recommend setting this value always. This command takes a single string argument

SetXmlMode Lists tells the MMS to send any lists as XML instead of text mode. This is recommended if the
control client supports XML. This command takes a string argument where that argument is None , Lists ,
or All .

SetEncoding 65001 tells the MMS to send data as UTF-8. There are other encodings available but 65001

will be the encoding of choice most of the time.

SetInstance Player_A sets which output subsequent browse and control commands are intended for.

SubscribeEvents tells the MMS to send events related to the currently selected instance as they occur. This
command takes an optional boolean argument or a comma delimited list of events to limit the subscription to. If
missing, the value is assumed to be true , which subscribes the control client to all events. The client will
remain subscribed for the duration of its connection. The subscription will follow the client from instance to
instance. No resubscription is necessary. Events for the selected or default instance are pushed to the connected
client. To get events from another instance, see SetInstance .

GetStatus requests that all events related to the selected instance be sent now.

Events

The MMS communicates data back to its control clients through events. These events carry information about the
current state of the server. They can also be used to request input from the user. Some events inform the control
client about the availability of various functions while others tell the control client to take some action.

Events follow a simple format:

 Marker Source Event=Value

and will look like:

 StateChanged Player_A TrackTime=121

or

 ReportState Player_A TrackTime=121

Metadata Events

There are four lines of metadata and four metadata labels.

MetaData1 is generally reserved for radio station names or for track count data.

MetaData2 is generally reserved for the artist name.

MetaData3 is generally reserved for the album name.

MetaData4 is generally reserved for the track name.

MetaLabelx events will always provide the label for the corresponding MetaDatax field. MetaLabel1

follows MetaData1 , MetaLabel2 follows MetaData2 , etc. There are four MetaLabelx events

An example of these events:

ReportState Player_A MetaLabel1=
ReportState Player_A MetaData1=Pandora: Stevie Ray Vaughan Radio
ReportState Player_A MetaLabel2=Artist
ReportState Player_A MetaData2=Stevie Ray Vaughan
ReportState Player_A MetaLabel3=Album
ReportState Player_A MetaData3=Texas Flood (Legacy Edition)
ReportState Player_A MetaLabel4=Track
ReportState Player_A MetaData4=Texas Flood

Now Playing Art is handled by providing a few separate events.

NowPlayingGuid provides the ID of the now playing item. For example, {20dd901a-b092-3386-dc16-

6b56f38a811e}

BaseWebUrl provides the protocol, address, and port portions of the URL to retreive art from. For example:
http://192.168.0.59:5005 .

For further details, see the Album Art section below.

Track Time

Track time is provided in seconds. A track duration may be provided, depending on the source of the content.

TrackTime indicates track position in seconds as a non-negative integer.

TrackDuration indicates the total number of seconds in the track as a non-negative integer.

In cases where the content does not have a total time (like a broadcast radio station from TuneIn),
TrackDuration will be 0 .

In such cases where the MMS has neither a track length nor a current track position, both TrackTime and
TrackDuration will be 0 .

Flags

All these events hold a true | false value and indicate whether a certian functionality is available.

Back defines whether or not there is anything in the navigation stack. If true, use Back <int> to jump back
<int> number of pages. The navigation stack begins with 0 . 0 is the current page.

BrowseNowPlayingAvailable defines whether a queue is available to browse. This will be true when
the queue has more than 0 items even the now playing item is a radio station.

ContextMenu defines whether or not AckButton CONTEXT is a valid command and the TuneBridgetm

button should be shown.

Mute defines whether or not the set instance is muted.

PlayPauseAvailable defines whether or not the Play , Pause , and PlayPause are valid and the
Play or Pause button should be shown.

RepeatAvailable defines whether or not Repeat is a valid command and the Repeat button should be
shown.

Repeat defines whether Repeat is enabled or disabled.

SeekAvailable defines whether or not Seek is a valid command and the scrubbing thumb should be
shown on the track progress meter.

ShuffleAvailable defines whether or not Shuffle is a valid command and the Shuffle button should be
shown.

Shuffle defines whether or not Shuffle is enabled or disabled.

SkipNextAvailable defines whether or not SkipNext is a valid command and the Skip Next button

should be shown.

SkipPrevAvailable defines whether or not SkipPrevious is a valid command and the Skip Previous

button should be shown.

Multistate Flags

Some values have more than two states and therefore cannot be represented as true | false values.

ThumbsUp indicates the state of the Thumbs Up button and whether the command is available.

ThumbsDown is identical to ThumbsUp , replacing Up with Down in all cases. Possible states are

-1 , 0 , and 1 where:

-1 indicates the button is disabled and the command is not available.

0 indicates the button is enabled but not set and the command is available.

1 indicates the button is both enabled and set and the command is available.

At the time of writing, no online service still uses a Stars rating system. However…

Stars indicates the state of the stars and whether the command is available. States range from -1 to 5

where:

-1 indicates stars are disabled and the command is not available.

0 - 5 indicate stars are enabled and should be showing the number of stars indicated in the value. The

command is also available.

Control

Play will tell the MMS to play.

Pause will tell the MMS to pause.

PlayPause will toggle the playstate between play and pause.

Seek <int> where <int> is a either a non-negative integer between 0 and the value of

TrackDuration or a negative integer between -1 and -1 * <valueOfTrackDuration> . When

<int> is non-negative, the playback position will be moved relative to the start of the track. When <int> is

negative, the playback position will be moved relative to the end of the track.

SkipNext skips to the next track. This command is governed by the SkipNextAvailable event.

SkipPrevious skips to the previous track if the value of TrackTime is less than 5 . Otherwise, it

restarts the current track if allowed by the given service. This command is governed by the

SkipPrevAvailable event.

ThumbsUp toggles the ThumbsUp state between 0 and 1 . This command is governed by the

ThumbsUp event.

ThumbsDown toggles the ThumbsDown state between 0 and 1 . This command is governed by the

ThumbsDown event. On some services, setting the ThumbsDown state to 1 will also skip to the next

track.

Browsing

Basics

All browsing on an MMS is done through the same basic format.

Browse<Container> <start> <count>

where <Container> is the target browse type, <start> is the one-based index the returned list should

start from, and <count> is the number of items the returned list should contain at most. For example:

BrowseArtists 1 10 will return 10 artists starting at item 1 .

BrowseArtists 11 10 will return 10 artists starting at item 11 .

Depending on whether SetXMLMode is set, the response may be in either text mode or XML mode. As above,

we strongly recommend XML if the control environment supports it as it offers more information.

Every browse item has a default action based on its type. We’ll go over these default actions later on. These

default actions can be superceded with attributes on each item.

action defines the secondary action to perform if the user presses the the action button for that item.

listAction defines the action to peform if the user presses the list item itself.

browseAction defines the action to perform after doing the default action for that item or doing the

listAction if one exists.

Other list item attributes

artGuid provides the guid to use if displaying art in the browse (See the Album Art section below). If this

attribute is missing, use the value of the guid .

button provides an integer value that indicates which secondary action to offer on that item. The value of this

attribute is defined by this table

Value Function

0 Off

1 Add

2 Delete

3 Play

4 Power

5 PowerOn

6 Edit

7 AllTracks

8 ShuffleAll

dna provides the name of the attribute containing the value to use for display.

guid provides the item’s ID for use in any action.

hasChildren indicates whether that menu item is a branch (1) or a leaf (0).

name provides the name of the item.

Picklists

Picklists are a way for the server to generically present a list to the control client without the control client needing

any additional information about that menu. All online content uses Picklists. Some local menus are Picklists.

Given their frequency, we must go over them first.

Picklists are always browsed using the BrowsePicklist command. In some cases, performing an item’s

action , listAction , or browseAction might result in a Picklist when that item’s default action would

not. A good example of this is when selecting local content for playback. The list items each have a

listAction that results in a intent clarification menu as a picklist that is sent to the client without the need of

BrowsePicklist .

Picklist items are selected with the AckPickItem <guid> command, respecting the presence of the

listAction attribute, of course.

Local Content

Local content can be browsed in whatever order is desired by the control client. However, most clients follow this

pattern:

Albums => Tracks

Artists => Albums => Tracks

Composers => Tracks

Favorites

Genres => Albums => Tracks

Playlists => Tracks

To browse a top level list, simply clear the Music Filter using SetMusicFilter Clear , then send the

appropriate Browse command. Valid commands are listed at the bottom of this section.

Online Content

All online sources are Picklist trees branching from BrowseRadioSources . The response to

BrowseRadioSources is a list of RadioSources . To select a specific service, use SetRadioFilter

Source=<guidOfService> . Subsequently, use the value of the intended online service. This example

assumes SetPickListCount has been set. The example browses Pandora.

SetXmlMode Lists

BrowseRadioSources

<RadioSources total="9" start="1" more="false" art="false" alpha="false" displ

ayAs="List" caption="Radio sources" np="1">

 <RadioSource guid="fbbcedb1-af64-4c3f-bfe5-000000002000" name="Deezer" dna

="name" isSearchable="True" browseAction="BrowseRadioGenres" button="0" />

 <RadioSource guid="fbbcedb1-af64-4c3f-bfe5-000000010000" name="iHeartRadio

" dna="name" isSearchable="True" browseAction="BrowseRadioGenres" button="0" /

>
 <RadioSource guid="fbbcedb1-af64-4c3f-bfe5-000000008000" name="Murfie" dna
="name" isSearchable="True" browseAction="BrowseRadioGenres" button="0" />
 <RadioSource guid="fbbcedb1-af64-4c3f-bfe5-000000000010" name="Pandora Int
ernet Radio" dna="name" np="1" isSearchable="False" browseAction="BrowseRadioS
tations" button="0" />
 <RadioSource guid="fbbcedb1-af64-4c3f-bfe5-000000000008" name="SiriusXM In
ternet Radio" dna="name" isSearchable="True" browseAction="BrowseRadioGenres"
button="0" />
 <RadioSource guid="fbbcedb1-af64-4c3f-bfe5-000000001000" name="Slacker Rad
io" dna="name" isSearchable="True" browseAction="BrowseRadioGenres" button="0"
 />
 <RadioSource guid="fbbcedb1-af64-4c3f-bfe5-000000000100" name="Spotify" dn
a="name" isSearchable="True" browseAction="BrowseRadioGenres" button="0" />
 <RadioSource guid="fbbcedb1-af64-4c3f-bfe5-000000004000" name="TIDAL" dna=
"name" isSearchable="True" browseAction="BrowseRadioGenres" button="0" />
 <RadioSource guid="fbbcedb1-af64-4c3f-bfe5-000000000020" name="TuneIn Radi
o" dna="name" isSearchable="True" browseAction="BrowseRadioGenres" button="0"
/>
</RadioSources>

SetRadioFilter Source=fbbcedb1-af64-4c3f-bfe5-000000000010
BrowseRadioStations
<PickList total="23" start="1" more="true" art="true" alpha="false" displayAs=
"List" caption="Pandora Internet Radio" source="Pandora" sourceTop="1">
 <PickItem guid="e82779bd-058f-6478-4785-0bba198d3c1e" name="Account: demo@
example.com" dna="name" hasChildren="1" button="0" artGuid="fbbcedb1-af64-4c3f
-bfe5-000000000010" />
 <PickItem guid="ea03ab84-c1bc-3eb7-c6e8-5e2317c616cb" name="Create a Pando
ra station..." dna="name" hasChildren="1" button="0" singleInputBox="1" />
 <PickItem guid="126e079c-3c5b-8dad-017a-9bc61ca8e7db" name="Browse Genre S
tations" dna="name" hasChildren="1" button="0" />
 <PickItem guid="31323232-3637-3532-3237-373536373538" name="QuickMix" dna=
"name" hasChildren="0" button="0" artGuid="31323232-3637-3532-3237-37353637353
8" />
 <PickItem guid="30353433-3735-3932-3531-393737393330" name="Rage Against T
he Machine Radio" dna="name" hasChildren="0" button="6" artGuid="30353433-3735
-3932-3531-393737393330" action="action" />

 <PickItem guid="37373233-3237-3933-3437-333630353239" name="Stevie Ray Vau

ghan Radio" dna="name" hasChildren="0" button="6" artGuid="37373233-3237-3933-

3437-333630353239" action="action" />

 <PickItem guid="34313932-3130-3333-3437-373937343738" name="Dinner Party R

adio" dna="name" hasChildren="0" button="6" artGuid="34313932-3130-3333-3437-3

73937343738" action="action" />

 <PickItem guid="36303133-3235-3930-3135-393434383737" name="All Time Low R

adio" dna="name" hasChildren="0" button="6" artGuid="36303133-3235-3930-3135-3

93434383737" action="action" />

 <PickItem guid="31373033-3236-3835-3935-383032373737" name="Sum 41 Radio"

dna="name" hasChildren="0" button="6" artGuid="31373033-3236-3835-3935-3830323

73737" action="action" />

 <PickItem guid="32353233-3334-3132-3339-303834383336" name="Of Mice &

Men Radio" dna="name" hasChildren="0" button="6" artGuid="32353233-3334-3132-3

339-303834383336" action="action" />

</PickList>

Valid Browse Commands

BrowseAlbums

BrowseArtists

BrowseComposers

BrowseFavorites

BrowseGenres

BrowseNowPlaying

BrowsePicklist

BrowsePlaylists

BrowseRadioSources

BrowseTitles

BrowseTopMenu

Presets

To store a Preset, use the StorePreset command. This command takes an optional double-quoted name
argument. If the name argument is specified, the MMS will store the Preset with that name. If no name is
specified, the MMS will prompt for a name using an InputBox. InputBoxes are natively supported by all our control
system drivers. As with all protocol commands, each command should be terminated with a carriage return and a
line feed (\r\n).

Examples:

StorePreset - This will be responded to with an InputBox from the server.
StorePreset "Party Time" - This will save a Preset called Party Time

To recall a Preset, use the RecallPreset command. This command takes either the double-quoted name of the
Preset or the unique ID of the Preset. To get either of these, please see the BrowseFavorites command,
described below. Recalling a Preset will replace the state of the selected Instance with the state stored in the
Preset. As with all protocol commands, each command should be terminated with a carriage return and a line feed
(\r\n).

Examples:

RecallPreset "Party Time" - This recalls the Preset by name
RecallPreset 9f9c8919-f939-d67a-dce2-cb049a4ead99 - This recalls the Preset by unique ID

Edit a preset with EditPreset nameOrId

Rename a preset with RenamePreset nameOrId newName

Delete a preset with DeletePreset nameOrId

To browse available Presets, use the BrowseFavorites or BrowsePresets commands. This Browse
command adheres to the same pattern as all other Browse commands.

This feature was once called Snapshot.

Playlists

Playlists are browsed with BrowsePlaylists . This command adheres to the same pattern as all Browse
commands.

Rename a playlist with RenamePlaylist oldName newName

Delete a playlist with DeletePlaylist nameOrId

Reorder tracks within a playlist with ReorderPlaylist playlistId srceTrackId destTrackId

Now Playing

The now playing queue can be browsed with BrowseNowPlaying . Only browse the queue if the

BrowseNowPlayingAvailable event is true .

All now playing indexes are 1 based.

Change songs by using JumpToNowPlayingitem <indexOfItem> .

Reorder the queue with ReorderNowPlaying <indexOfTrackToMove> <indexToMoveTo> .

Remove a song with RemoveNowPlayingItem <indexOfTrackToRemove> .

Clear the queue with ClearNowPlaying .

Album Art

BaseWebUrl provides the protocol, address, and port portions of the URL to retreive art from. For example:

http://192.168.0.59:5005 .

The specific handler on the MMS is called getart so an example of a base for retreiving art would be

http://192.168.0.59:5005/getart? . Always include the ID of the item.

To construct the full URL to get art, use the above values along with the below options.

Option Purpose Possible Values

c constrain

0=size image to fit height and width

1=constrain to dimension and maintain aspect

ratio

guid unique id of the album, artist, genre, title, etc

fmt
image format. Valid values are png or

jpg

instance the instance GUID

h image height

h image height

w image width

rfle reflection elevation

rflh reflection height

rflo reflection opacity

rz reflection rotation (z axis)

RESTful API

Introduction

The root endpoint for all RESTful communcation is http://ipOrNameOfServer/api/ . A GET request to

this endpoint will receive a JSON response containing three arrays: events , browse , and messages .

Response

events contains name , value pairs where the event names are the same as the previously described IP

protocol and values carry the same meaning per event.

browse contains the response to any browse commands made on separate GET requests to this same

endpoint. This will discussed more later.

messages contains generic messages.

{
 events: [
 {
 name: "TrackTime",
 value: 369
 }
],
 browse: null,
 messages: null
}

Sending commands

To send commands, simply replace any spaces in the command as it would be used in the IP protocal with a / .
For example, if the IP command is SubscribeEvents True , a GET to
http://ipOrNameOfServer/api/SubscribeEvents/True would execute that command. Be sure to URL

encode any parameters to ensure no invalid characters

It’s important to remember that there is a fundamental difference between the RESTful API and the IP protocol in
that RESTful communications are NOT guaranteed to be processed in the order the control client sends them as
they are all transmitted on different sockets. The server may receive them out of order. To handle this and to
force sets of commands to be processed in order, make use of the Script command. This command allows
several commands to executed in a specific order by transmitting them all at once. When using the Script

command, be sure to URL encode each (sub)command entirely as it is a parameter rather than a command. For
example, if we wanted to set the target instance and subscribe to events in that order, we would do
http://ipOrNameOfServer/api/Script/SetInstance%20Player_A/SubscribeEvents%20True .

Regardless of the command sent, the response will be received in the next request to the bare endpoint
http://ipOrNameOfServer/api/ . It’s important to note that because of the relationship between requests

and their responses, only one RESTful session per computer is supported at this time.

